In mice with type 2 diabetes, a vascular endothelial growth factor (VEGF)-activating transcription factor modulates VEGF signaling and induces therapeutic angiogenesis after hindlimb ischemia.
نویسندگان
چکیده
Peripheral arterial disease is a major complication of diabetes. The ability to promote therapeutic angiogenesis may be limited in diabetes. Type 2 diabetes was induced by high-fat feeding C57BL/6 mice (n = 60). Normal chow-fed mice (n = 20) had no diabetes. Mice underwent unilateral femoral artery ligation and excision. A plasmid DNA encoded an engineered transcription factor designed to increase vascular endothelial growth factor expression (ZFP-VEGF). On day 10 after the operation, the ischemic limbs received 125 microg ZFP-VEGF plasmid or control. Mice were killed 3, 10, or 20 days after injection (n = 10/group, at each time point). Limb blood flow was measured by laser Doppler perfusion imaging. VEGF mRNA expression was examined by real-time PCR. VEGF, Akt, and phospho-Akt protein were measured by enzyme-linked immunosorbent assay. Capillary density, proliferation, and apoptosis were assessed histologically. Compared with normal mice, mice with diabetes had greater VEGF protein, reduced phospho-Akt-to-Akt ratio before ligation, and an impaired perfusion recovery after ligation. At 3 and 10 days after injection, in mice with diabetes, gene transfer increased VEGF expression and signaling. At later time points, gene transfer resulted in better perfusion recovery. Gene transfer with ZFP-VEGF was able to promote therapeutic angiogenesis mice with type 2 diabetes.
منابع مشابه
Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملImpaired Angiogenesis After Hindlimb Ischemia in Type 2 Diabetes Mellitus
Deficient angiogenesis after ischemia may contribute to worse outcomes of peripheral arterial disease in patients with diabetes mellitus (DM). Vascular endothelial growth factor (VEGF) and its receptors promote angiogenesis. We hypothesized that in peripheral arterial disease, maladaptive changes in VEGF ligand/receptor expression could account for impaired angiogenesis in DM. Skeletal muscle f...
متن کاملMolecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction
Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...
متن کاملImpaired Angiogenesis Following Hindlimb Ischemia in Type 2 Diabetes Mellitus Differential Regulation of Vascular Endothelial Growth Factor Receptor 1 and Soluble VEGFR-1
Deficient angiogenesis following ischemia may contribute to worse outcomes of peripheral arterial disease in patients with diabetes mellitus (DM). Vascular endothelial growth factor (VEGF) and its receptors promote angiogenesis. We hypothesized that in peripheral arterial disease, maladaptive changes in VEGF ligand/receptor expression could account for impaired angiogenesis in DM. Skeletal musc...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 56 3 شماره
صفحات -
تاریخ انتشار 2007